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EE-518: Analog Circuits for Biochip

Lecture #2
Equivalent Circuits
for Bio/CMOS interfaces
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Lecture Outline

(Book Bio/CMOS (2nd Ed.): Chapter’ paragraphs § 2.8-9; 5.4; 10.2)

Passive model (Randles) for
electrolyte solutions

Passive model with CPE
Passive model for Brain Interface

Active model with Current
Generator

Active model with Voltage Effects
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Liquid Solution: lonic Solid in liquid
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Liquid Solution: lonic Solid in liquid
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Liquid Solution: IElectrolytlc Solution
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Liquid Solution: IElectrolytlc Solution
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lonic Solution of HCI

Dissociation of Chloride Acid
2HCI+2H,0 — 2H,0" +2CI"

2H,O"+2¢ ->2H,0+H, T

- Electrode (Cathode)

+ Electrode (Anode)
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Liquid Solution: IElectrolytlc Solution
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Liquid Solution: IElectrolytlc Solution
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Liouid Solution:lEIectrontic Solution
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Liouid Solution:lEIectrontic Solution
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Liouid Solution:lEIectrontic Solution
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Helmholtz Planes
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Equivalent Circuit with Layering
effects: Randles Model

Capacitance for layering-effects

&)
loty

Solution resistance \

Electrode resistance
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Randle Model
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Equivalent circuits of DNA Bio/CMOS interface
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Equivalent circuit: passive model
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Equivalent Impedance
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This impedance presents both
Amplitude and Phase
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Bode Plots

P,
A
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I'he Bode plots show amplitude and phase of the

impedance
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Equivalent Impedance
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This impedance presents both

resistive and reactive components
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Nyquist Plot

-Im [Z]

Re[Z]

The Nyquist plot 1s also a mean to fit data about a
specific electrochemical cell
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Nyquist Plot
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Demonstration that i1t 1s a circle

in the Complex plane
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Nyquist Plot
Zj,=Rj, + X} =R.Ry,

R}, + X7, —RLR;; =0

(- 5) - (%) -
X// -|-(R// 5 5 =(

Demonstration that i1t 1s a circle

in the Complex plane
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-Im [Z]

>

Nyquist Plot
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R,/2
Re[Z]

Demonstration that i1t 1s a circle

in the Complex plane
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Nyquist Plot

| RL/Z RS RS+RL

Shifted Re [Z]

by R

That bring us actually to a circle

shifted by R, in the Complex plane

S.Carrara, EPFL - Lausanne
(Switzerland)
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Equivalent Impedance
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Frequency drive the move on the circle
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Nyquist Plot

| R,2 Ks RytR)

Shifted ] Re [Z]

by Rg

That bring us actually to a circle

shifted by R, in the Complex plane

S.Carrara, EPFL - Lausanne
(Switzerland)
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-Im [Z]/Q

Nyquist Plots
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Capacitance vs Frequency
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Fig. 9. Measured capacitance versus charge/discharge frequency on clean
gold electrodes. The continuous line shows the fitting.

However, the Layering effect might correspond
to a non-1deal capacitance
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Interface models

CPE
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Equivalent circuits for non-ideal layering effects
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CPE element
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e w*C), jo*C,

The Constant Phase Element (CPE)

as Equivalent Component
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CPE element
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The Capacitance DNA Detection

ELECTRODE
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Unlabeled ssDNA may be detected with capacitance

measurements as due to charge displacement
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Frequency behavior in DNA sensing

Capacitance [pF]
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R(GQ) 45

177
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X(GQ) 123

837

970

S.Carrara et al., Sensors and Transducer Jowrnal 76 (2007) 969-977

From ssDNA to dsDNA, the R; does not change,

nor the Repg, while the Xpp does
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Brain/CMOS interfaces
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Bode Plots on
rfaces
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Nyquist Plots on
Brain/CMOS interfaces
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Better Model for
Brain/CMOS interfaces

@ Solution
3¢ Inner biological layer

Y¢ Outer biological layer

l > In Time

Gian Luca Barbruni ©2023
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Brain/CMOS interfaces

Initial

@ Solution
S Inner biological layer
Y% Outer biological layer

® .0 ©
O
Rs O

Barbruni et al., IEEE TBCAS, 2023

Gian Luca Barbruni ©2023

» v R Y
. e = S
Ao T g r SR

After Back to clean

Recording After Stimulation

46



Different Models for
Neurostimulators.
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Non-Faradaic Current:
passive model
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Non-Faradaic currents are also circulating in the cell
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CE

Faradaic Current:
active model
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in(t) also depends on:
1. Chemicals concentration

2. Time
3. Applied Voltage
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Faradaic Current versus
Time & Concentration
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Typical curve in chronoamperometry
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Faradaic Current versus
Voltage & Concentration
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O+ reduction and H,O, oxidation observed by potential sweeping
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Faradaic Current Generator
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The sensitivity depends on the Reference Potential
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Faradaic Current Generator

I=8C+1,;,
|
IOﬁset = O
I=5C
(VY
I(1,V)=S(V)C(t) S(V)=S,e °

The sensitivity depends on the Reference Potential
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Equivalent circuit
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The equivalent circuit of the electrochemical cell needs
to take 1nto account that now the Faradaic current
depends by voltage too
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Faradaic currents on Voltage-scan

Current [mA]
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Faradaic currents with dependence by voltage may be
simulated (in this case, without capacitance current)
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Equivalent Circuit for
Bio/CMOS interfaces
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Impedance in Frequency of
Bio/CMOS interfaces in micron sizes
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Phase in Frequency of
Bio/CMOS interfaces in micron sizes

—a&— Measurement
100 - —— Full active model
—A— Active model

—v— Passive model

80 -

107" 10° 10’ 10% 10° 10% 10°
Frequency (Hz) 58



Risk of Saturation in Chemical Sensors

Measurement
Full active model
Active model
Passive model
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Transient Behaviors in Chemical Sensor
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The Right Equivalent Circuit
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