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EE-518: Analog Circuits for Biochip

Lecture #2
Equivalent Circuits 
for Bio/CMOS interfaces
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• Passive model (Randles) for 
electrolyte solutions 

• Passive model with CPE
• Passive model for Brain Interface
• Active model with Current 

Generator
• Active model with Voltage Effects 

Lecture Outline
(Book Bio/CMOS (2nd Ed.): Chapter’ paragraphs §2.8-9; 5.4; 10.2)
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Liquid Solution: Ionic Solid in liquid
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Liquid Solution: Ionic Solid in liquid
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Liquid Solution: Ionic Solid in liquid
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Liquid Solution: Ionic Solid in liquid
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Liquid Solution: Ionic Solid in liquid
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Electrolytic solutions are 
conductive solutions thanks to 
ionically dissociated solutes 
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Ionic Solution of HCl

Dissociation of Chloride Acid 

+ Electrode (Anode) 

–Electrode (Cathode) 
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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Liquid Solution: Electrolytic Solution
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The Ohm’s low of conductivity
is not more valid for Faradic Currents!

Cl2
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Liquid Solution: Electrolytic Solution
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The Ohm’s low of conductivity
is still valid in a.c.!

Cl2
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Helmholtz Planes

inner Helmholtz plane 
outer Helmholtz plane 

diffusion layer 

solution bulk 

~



RL

RS

CDL

(c) S.Carrara 22

Equivalent Circuit with Layering 
effects: Randles Model

Solution resistance
Electrode resistance

Capacitance for layering-effects
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Randle Model

Equivalent circuits of DNA Bio/CMOS interface

//

DL
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CE WE
RSC RSW

RCE

CCE

RWE

CWE

Equivalent circuit: passive model

How to measure?



Equivalent Impedance

This impedance presents both 
Amplitude and Phase

(c) S.Carrara 25



Bode Plots

The Bode plots show amplitude and phase of the 
impedance 
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Log R

Log Z//

π/2



Equivalent Impedance

This impedance presents both 
resistive and reactive components
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Nyquist Plot

The Nyquist plot is also a mean to fit data about a 
specific electrochemical cell
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Nyquist Plot

Demonstration that it is a circle
in the Complex plane
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Nyquist Plot

Demonstration that it is a circle
in the Complex plane
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Nyquist Plot

Demonstration that it is a circle
in the Complex plane
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Re[Z]
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RL/2

RL/2



S.Carrara, EPFL - Lausanne 
(Switzerland)
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RL

RS

CDL

Re[Z]

-I
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]

RS+RLRSRL/2

RL/2

Shifted 
by RS

Nyquist Plot

That bring us actually to a circle 
shifted by Rs in the Complex plane



Equivalent Impedance

Frequency drive the move on the circle 

Z// = Z =CDL / /RL

(c) S.Carrara 33



S.Carrara, EPFL - Lausanne 
(Switzerland)
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RL
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CDL

Re[Z]
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Shifted 
by RS

high ω Low ω

Nyquist Plot

That bring us actually to a circle 
shifted by Rs in the Complex plane



S.Carrara, EPFL - Lausanne 
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Nyquist Plots
(also named Cole-Cole Plots)
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However, the Layering effect might correspond 
to a non-ideal capacitance

Capacitance vs Frequency



RS

RL

CDL
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Interface models

Equivalent circuits for non-ideal layering effects

RS

RL

CPE

RS

CCPE (⍵)

RL

RCPE (⍵)
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CPE element

The Constant Phase Element (CPE) 
as Equivalent Component

Only if ⍺ < 1
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CPE element

-
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The Capacitance DNA Detection
EL

EC
TR

O
DE

Rct

Cdl

RS

EL
EC

TR
O

DE

Applied 
voltage 

(e.g. V<0)

Ions 
displacement

DNA molecules

C
d
A

µ

Unlabeled ssDNA may be detected with capacitance 
measurements as due to charge displacement
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Frequency behavior in DNA sensing

@ 1KHz

From ssDNA to dsDNA, the RL does not change, 
nor the RCPE, while the XCPE does

DNA Targets hybridized to DNA 
probes onto Gold electrodes

RS
RL

CPE
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Brain/CMOS interfaces
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Barbruni et al., IEEE TBCAS, 2023

Bode Plots on 
Brain/CMOS interfaces

In Time
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Nyquist Plots on
Brain/CMOS interfaces

1

2

3

In Time



45
Gian Luca Barbruni ©2023

Better Model for
Brain/CMOS interfaces

In Time
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Barbruni et al., IEEE TBCAS, 2023

Brain/CMOS interfaces
Initial

After 
Recording 

Back to clean 
After Stimulation
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Barbruni et al., IEEE MOCAST, 2023

Different Models for 
Neurostimulators

RS
Rct

CPE



Non-Faradaic Current: 
passive model

Non-Faradaic currents are also circulating in the cell

VRef

(c) S.Carrara 48
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iF (t)

CE WE
RSC RSW

RCE

CCE

RWE

CWE

iF(t) also depends on:

1. Chemicals concentration 
2. Time
3. Applied Voltage

Faradaic Current: 
active model



Typical curve in chronoamperometry

IOffset

(c) S.Carrara 50

Faradaic Current versus
Time & Concentration



O+ reduction and H2O2 oxidation observed by potential sweeping

(c) S.Carrara 51

IF

Faradaic Current versus
Voltage & Concentration



Faradaic Current Generator

The sensitivity depends on the Reference Potential
(c) S.Carrara 52

200 mV

500 mV

600 mV

700 mV

900 mV



Faradaic Current Generator

The sensitivity depends on the Reference Potential

I = SC

I = SC + IOffset

IOffset = 0

I t,V( ) = S V( )C t( ) S V( ) = S0e
−
V−V0( )2

σ

(c) S.Carrara 53
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Equivalent circuit

iF (VWE)

CE WE
RSC RSW

RCE

CCE

RWE

CWE

The equivalent circuit of the electrochemical cell needs 
to take into account that now the Faradaic current 

depends by voltage too
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Potential [V]

Faradaic currents on Voltage-scan

Faradaic currents with dependence by voltage may be 
simulated (in this case, without capacitance current)

C
ur

re
nt

 [m
A

]

I0

V0



56

Equivalent Circuit for 
Bio/CMOS interfaces

4.2 GΩ 1.2 nF

2 nF

79.6 MΩ 

1.2 nF

1.5 MΩ 

140 pF

28 KΩ 

210 pF30.4 GΩ 

0.5 nF

318 MΩ 

280 pF

3.3 MΩ 

160 pF

34 KΩ 

Active model Passive modelActive model
With Voltage effects
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Impedance in Frequency of 
Bio/CMOS interfaces in micron sizes
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Phase in Frequency of 
Bio/CMOS interfaces in micron sizes
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Risk of Saturation in Chemical Sensors
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Transient Behaviors in Chemical Sensor



61

The Right Equivalent Circuit
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4.2 GΩ 1.2 nF

2 nF

79.6 MΩ 

1.2 nF

1.5 MΩ 

140 pF

28 KΩ 

210 pF30.4 GΩ 

0.5 nF

318 MΩ 

280 pF

3.3 MΩ 

160 pF

34 KΩ 

Full active model Active model Passive model


